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Abstract. Channel estimation is a critical component of vehicular com-
munications systems, especially in high-mobility scenarios. The IEEE
802.11p standard uses preamble-based channel estimation, which is not
sufficient in these situations. Recent work has proposed using deep neural
networks for channel estimation in IEEE 802.11p. While these methods
improved on earlier baselines they still can perform poorly, especially in
very high mobility scenarios. This study proposes a novel approach that
uses two independent LSTM cells in parallel and averages their outputs
to update cell states. The proposed approach improves normalised mean
square error, surpassing existing deep learning approaches in very high
mobility scenarios.

Keywords: Channel estimation · deep learning · dual-cell LSTM · IEEE
802.11p · vehicular channels.

1 Introduction

The international wireless communication standard IEEE 802.11p was intro-
duced for vehicle-to-vehicle communication. However, the original IEEE 802.11p
framework did not take into account high mobility and rapid channel changes,
which can affect system performance at high speeds [15]. Reliable wireless ve-
hicular communication is challenging due to the need for accurate channel state
information (CSI) in high-mobility scenarios, where estimates can quickly be-
come outdated.

IEEE 802.11p employs a data pilot-aided (DPA) approach for channel es-
timation, with techniques such as spectral temporal averaging (STA) [3] and
time-domain reliable test frequency domain interpolation (TRFI) [11] estima-
tors to improve accuracy. However, in high signal-to-noise ratios (SNRs), STA
may not effectively account for frequency and time variability while TRFI’s as-
sumption of high correlation between successive transmitted signals may not
hold true.
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The ability of a deep neural network (DNN) to generalize in a robust man-
ner has made it an attractive option to improve channel estimation. DNN al-
gorithms have been investigated as a means of improving traditional channel
estimation techniques such as STA and TRFI. These DNN-based postprocessors
have excelled at capturing time-varying behaviours in complex propagation en-
vironments. An auto-encoder (AE) DNN successfully handled the inherent error
propagation challenges in DPA estimation [8]. Another approach combined STA
for initial linear channel estimation with a deep neural network (DNN) as a non-
linear postprocessor [5]. In Gizzini et al. [6] a TRFI-DNN was introduced that
combines TRFI and a DNN. TRFI-DNN has been shown to be more effective
than other DNN methods compared with.

Performance-wise, AE-DNN [8] has a relatively low bit error rate (BER).
However, it is computationally complex and does not effectively learn the time-
frequency channel correlation. STA-DNN [5] outperforms both AE-DNN and
TRFI-DNN [6] in low SNRs of up to 20 dB at a velocity of 120 km/h. However,
its performance starts to deteriorate as the SNR increases. TRFI-DNN, on the
other hand, outperforms AE-DNN by approximately 3 dB for BER = 10−3. In
scenarios where mobility is higher than 120 km/h, STA-DNN starts to experience
an error floor at even lower SNRs of 17 dB. However, the challenge of dealing
with a rapidly changing channel remains for both temporal filtering and DNN
postprocessing.

To estimate wireless channels in high-mobility situations, we propose using
a dual-cell long-short-term memory (LSTM) network. This network can capture
short-term temporal dependencies and causal correlations. A DPA block and
a temporal averaging (TA) block are used to further reduce the noise in the
dual-cell LSTM estimates.

The remainder of the paper is structured as follows: Section 2 reviews IEEE
802.11p and channel estimation, Section 3 introduces the dual-cell LSTM ap-
proach, Section 4 describes the experiments, Section 5 presents results and anal-
ysis, and Section 6 concludes.

2 Background

This section provides a brief overview of the IEEE 802.11p standard specifica-
tion. It also discusses channel estimation system models and techniques within
the context of IEEE 802.11p, serving as the foundation for improving vehicular
communication systems.

2.1 IEEE 802.11p Standard Specifications and Frame Structure

The IEEE 802.11p protocol employs a technique referred to as Orthogonal
Frequency Division Multiplexing (OFDM) to transfer data via radio channels.
OFDM divides the available bandwidth into several closely spaced subcarrier fre-
quencies, allowing many signals to be sent simultaneously. During transmission,
some subcarriers carry pilot signals that are known by both the transmitter and
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the receiver. The receivers use pilots to analyse changes in the communication
channel. As vehicles travel at different speeds, factors such as distance, barriers,
and multipath effects constantly change the way signals propagate. These pilot
signals can be used to track time-varying channel conditions and obtain the CSI.
This CSI can then be used to improve the decoding of transmitted user data,
ensuring efficient communication.

OFDM signal consists of modulation symbols sent on an active subcarrier
during a particular time interval. OFDM frames are made up of several payload
OFDM signals that are preceded by preamble symbols that fulfil various key
roles. The preamble enables the receiver to synchronise, establish an initial coarse
channel estimate, and mark the beginning of incoming frames.

In IEEE 802.11p, only 52 of the 64 available subcarriers are used for data
transmission and pilot symbols, as illustrated in Figure 1. The rest of the subcar-
riers are kept for other purposes, such as guard bands and direct current (DC)
offset. To ensure accurate channel tracking, pilot signals are inserted into specific
subcarriers.

Fig. 1: Subcarrier arrangements in a IEEE802.11p transmission [5].
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2.2 Channel Estimation System Model

This study assumes perfect synchronisation and only considers a frame structure
comprising two extended preambles at the start, followed by I OFDM data
symbols. Following the terminology used in [4], the expression of the transmitted
and received OFDM symbol can be represented as follows:

ỹi[k] =

{
h̃i,d[k]x̃i,d[k] + ṽi,d[k], k ∈ Kd

h̃i,p[k]x̃i,p[k] + ṽi,p[k], k ∈ Kp

, (1)

where x̃i[k] denotes the OFDM symbol transmitted at the ith instance, affected
by its corresponding time-varying frequency-domain channel response h̃i[k]. ỹi[k]
are the OFDM data symbols received. Furthermore, ṽi[k] denotes the frequency-
domain equivalent of additive white Gaussian noise (AWGN) characterised by a
variance of σ2. The indices Kd and Kp refer to the sets of subcarriers dedicated
to data and pilot signals, respectively.

Thus, the OFDM symbol received (ỹi[k]) consists of both the data and the
pilot subcarrier symbols affected by the channel response, with noise added.
Channel estimation is the task of determining h̃i[k] for each OFDM symbol.

2.3 IEEE 802.11p Channel Estimation Schemes

Accurate channel estimation in OFDM systems such as IEEE 802.11p relies on
well-allocated pilot subcarriers. However, the standard’s limited number of pilots
may not suffice for tracking channel variations effectively. Two proposed channel
estimation schemes tackle this issue: one uses data subcarriers alongside pilots,
while the other inserts additional pilots at the cost of a reduced transmission
rate. Achieving reliable channel estimation requires a careful balance between
accuracy and transmission efficiency.

Recently, models based on recurrent neural networks (RNNs) have shown
promise in leveraging sequential dependencies in channel data for channel esti-
mation in vehicular communication [4, 10, 13]. Among RNN architectures, LSTM
networks can learn long-term dependencies and have shown excellent results in
sequential tasks [9].

In the context of channel estimation, an LSTM has been used to directly
map pilot sequences to channel responses [13], while Gizzini et al. proposed a
long-short-term memory data pilot-aided temporal averaging (LSTM-DPA-TA)
integration to improve estimates in high mobility situations [4]. Hou et al. [10]
also employed a single-layer Gated Recurrent Unit (GRU) as a post-processing
for the estimation of DPA.

DPA Estimation The DPA estimation technique uses both pilot subcarriers
and demapped data subcarriers to estimate the channel for the present OFDM
symbol [8]. Following the notation in [4] the demapped data symbol di[k] for
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each subcarrier K is given in Equation 2 as follows:

di[k] = D

 yi[k]

ˆ̃
hDPAi−1

[k]

 ,
ˆ̃
hDPA0

[k] =
ˆ̃
hLS[k], k ∈ Kon, (2)

Here, D(.) signifies the process of demapping to the closest constellation point
based on the chosen modulation order, Kon are the active subcarriers, h̃LS[k] is
the channel estimated using the Least Squares (LS) method from the received
preambles, namely y

(p)
1 [k] and y

(p)
2 [k] such that:

h̃LS[k] =
y
(p)
1 [k] + y

(p)
2 [k]

2p[k]
, k ∈ Kon, (3)

In this context, p[k] denotes the predetermined frequency-domain preamble se-
quence. Subsequently, the final updates for the DPA channel estimation are
carried out in the following manner:

h̃DPAi [k] =
yi[k]

di[k]
, k ∈ Kon. (4)

It should be noted that DPA fundamental estimation serves as an initial reference
for a majority of IEEE 802.11p channel estimation techniques [10].

TA Processing Temporal averaging (TA) is a noise reduction technique in
which the noise reduction ratio can be calculated analytically [4]. The TA method
assumes that the noise terms of consecutive OFDM symbols are not correlated.
TA analyses variations by averaging the channel estimations across OFDM sym-
bols. Following the notation in [4], consider the estimate of the channel hk,n

in the subcarrier k and symbol n. TA computes a moving estimate Ĥk of the
channel frequency response hk as the weighted sum:

Ĥk,n = (1− 1/α)ĥk−1,n + (1/α)ĥk,n (5)

In this case, α denotes the window size over which the averages are calculated. A
larger α incorporates more symbols. TA reduces noise through averaging, making
it a good candidate for postprocessing.

STA-DNN Estimator Previous work [5] recognised the problems in only using
traditional STA estimates [3] and proposed a hybrid STA-DNN technique to
solve them. The typical STA estimator averages the initial estimate of the DPA
channel over frequency and time.

To compensate for the time-varying channel conditions, STA uses fixed aver-
age window widths and weights [3]. To counteract this, Gizzini et al. [5] suggest
creating an STA-DNN estimator by feeding the STA estimate to a deep neural
network (DNN). Their evaluation showed that the STA-DNN technique corrects
errors and greatly increases the accuracy of the estimation over the traditional
STA estimation [5]. Despite these improvements, there is still a significant error
in high-mobility vehicle situations at low SNR [4].
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LS Channel Estimate In IEEE 802.11p, the basic LS channel estimation
technique is used as initial channel estimation. Two successive training symbols
T1 and T2 are used to obtain the initial frequency response of the channel of the
kth subcarrier as follows:

H̃0 (k) =
YT1 (k) + YT2 (k)

2XT (k)
, k ∈ Kon (6)

where XT (k) is the predefined training symbol of the kth subcarrier, YT1(k) and
YT2(k) are the symbols in the frequency domain of the receiver. The LS channel
estimation approach overlooks time variations, resulting in reduced accuracy as
the OFDM symbol index increases. To maintain reliable performance in mobile
scenarios, more advanced channel tracking techniques are essential, accounting
for dynamic channel changes and ensuring accurate estimation.

The channel estimation schemes discussed are used in this work for compari-
son purposes. LS estimation is used as an initial estimation approach before our
dual-cell LSTM method. This is followed by applying DPA as a post-processing
step to refine our dual-cell LSTM estimate. A step-by-step procedure on how
these techniques are used in our work is discussed in detail in Section 3.

3 Proposed Dual-Cell LSTM Estimation Method

LSTM networks are designed for sequential data with temporal dependencies.
These networks have an architecture that allows them to understand the tempo-
ral dependencies in the data, enabling them to predict future data based on past
observations [9]. The gated cell structure of LSTMs enables them to learn long-
term temporal relations by regulating the input of new information, eliminating
unnecessary past information, and updating the hidden state using selected cell
state values [14]. LSTMs have been successfully used in different domains and
applications such as time series forecasting [12] and speech recognition [7].

This section introduces a novel dual-cell LSTM architecture that uses two
independent LSTM cells in parallel to capture sequential information from dif-
ferent temporal perspectives. This enables the model to fuse representations
learnt from different, non-overlapping temporal perspectives at each timestep.
The method also integrates DPA and TA as post-processing methods to reduce
noise.

The dual-cell structure is distinct from a bidirectional LSTM as it is com-
posed of two parallel LSTMs operating in the forward direction, while a bidirec-
tional LSTM comprises two LSTMs, one processing the sequence in a forward
direction and the other in a backward direction. Our hypothesis is that this
dual-cell architecture is capable of capturing a more complete image of channel
dynamics compared to other LSTM structures. The proposed protocol aims to
efficiently address channel estimation in highly dynamic environments, such as
vehicular communication.

As illustrated in Figure 2, the inputs (xt−1, xt−2, xt−3, etc.) are supplied
directly to the independent LSTM cells at the same time. Following the typical
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Fig. 2: Schematic representation of the dual-cell LSTM estimator. The architec-
ture consists of two parallel LSTM cell chains, with each cell processing sequen-
tial inputs from xt−1 to xt. The outputs from both chains are fused to produce
the final output.

LSTM design [9], each LSTM cell consists of an input gate, a forget gate, an
output gate, and a cell memory block. For both cells, the number of hidden units
is set to H. At each time step t, the same input sequence xt is fed into both
cells to update their hidden states (h1,t and h2,t) and cell states (c1,t and c2,t).
This processing takes place in parallel, without information exchange between
cells. Finally, a combined output yt is produced by averaging the hidden state
outputs of both cells and passing them through a linear layer. This captures
representations from the two processing streams, although independently and
simultaneously. Averaging the outputs of the two cells has various benefits:

– Combining the representations learned by each cell helps to prevent overfit-
ting. Cells may capture somewhat different features of the input sequence.

– Averaging provides a type of ensembling in which the combination of numer-
ous models (cells) outperforms isolated ones.

– By averaging time-distributed outputs at each step, the model may use in-
formation processed in both cells at the same time.

3.1 Dual-Cell LSTM Estimation Algorithm

This section presents the algorithm for the proposed dual-cell LSTM model.
(Also see Algorithm 1.)

The Dual-Cell LSTM model for the channel estimation method can be broken
down into four phases:

– First, an LS channel estimation is performed. Initial channel estimation is
obtained as illustrated in Section 2.3. This forms the input dataset (˜̄xi) used
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Algorithm 1 Dual-Cell LSTM Model for Channel Estimation

Data: HLS_Structure, True_Channel_Structure,
Step 1: LS estimation to obtain the initial channel estimation that is used as
the training dataset (HLS_Structure)
Step 2: Load dataset

- Load True_Channel_Structure
- Load HLS_Structure

Step 3: Prepare input and target matrices
- Construct Dataset_X by combining real and imaginary parts of

HLS_Structure.
- Construct Dataset_Y by combining real and imaginary parts of

True_Channel_Structure.
Step 4: Initialize dual LSTM cell model

- Create two LSTM cells: cell1 and cell2
- Initialise hidden and cell states of both cells

Step 5: Train model
while not converged do

Step 5.1: Forward pass
- Feed Dataset_X to both cells
- Get outputs out1 and out2 from cell1 and cell2
- Calculate out_avg = (out1 + out2)/2
- Calculate loss between out_avg and Dataset_Y
Step 5.2: Backpropagate loss
- Update cell parameters using backpropagation

end while
Step 6: Channel estimation on new data

- Forward pass new samples through trained model
- Get channel estimates ˆest = out_avg

Step 7: Post-processing
- Perform DPA estimation on ˆest to improve estimates
- Perform TA on DPA outputs
- Final estimated channel

Step 8: Calculate evaluation metrics
- Calculate NMSE, BER., on test dataset

Step 9: Repeat step 4 for the required number of epochs
Step 10: Save trained model

to train the model. Following the notation presented in [4], the input x̄i can
be obtained as follows:

x̄i =

{
ˆ̃
hLSTMi−1,d

[k], k ∈ Kd

ˆ̃
hi−1,p[k], k ∈ Kp

. (7)

The input ˜̄xi is computed by transforming LS estimate x̄i from complex val-
ues to real values. ˆ̃hi−1,p[k] is the LS estimated channel at the Kp subcarriers.
˜̄xi is input to the LSTM as:

ˆ̃
hLSTMi.d

= ΩLSTM(˜̄xi, Θ), (8)

where ΩLSTM denotes the LSTM processing unit and Θ denotes the overall
weights.
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– Second, the LSTM model is trained to estimate the channel characteristics
from the received data.

– Third, the DPA post-processing technique is used to improve estimations,
as follows:

dLSTMi [k] =D

 yi[k]

ˆ̃
hLSTMi−1

[k]

 ,
ˆ̃
hLSTM0 [k] =

ˆ̃
hLS[k], (9)

ˆ̃
hLSTM−DPAi [k] =

yi[k]

dLSTMi [k]
. (10)

– Fourth, the TA technique is the final post-processing method: TA is applied
to the estimated channel ˆ̃

hLSTM−DPAi [k] to further reduce the impact of
AWGN noise as follows:

ˆ̄hDNN−TAi,d
=

(
1− 1

α

)
ˆ̄hDNN−TAi−1,d

+
1

α
ˆ̄hLSTM−DPAi,d

. (11)

A fixed α value of 2 is used this is based on the analysis done in [4].

Finally, estimates are evaluated using normalised mean squared error (NMSE)
and bit error rate (BER) metrics.

4 Experimental Setup

This section discusses the channel model employed for data generation, the data
preparation for LSTM and the hyperparameter optimisation process.

4.1 Channel Model

Vehicular channel models, widely examined in the literature [4–6], originate from
channel measurements in metropolitan Atlanta, Georgia, USA [1]. We conducted
an analysis of the vehicle-to-vehicle same direction with wall (VTV-SDWW)
tapped delay line (TDL) vehicular channel model, which is used for communi-
cation between two vehicles travelling in the same direction with a central wall
between them and maintaining a distance of 300-400 metres between them.

Two mobility scenarios based on the VTV-SDWW TDL were adopted for
comparison: (i) high mobility (V = 100 km/h, Doppler shift fd = 550 Hz) and
(ii) very high mobility (V = 200 km/h, fd = 1,100 Hz). Simulation parameters
included a frame size of 50 OFDM symbols, 16QAM modulation, and convolu-
tional channel coding at a half-code rate. The dataset consisted of 12,000 training
samples, 4,000 validation samples, and 2,000 testing samples. During training, a
training SNR level of 40 dB is used to improve the generalization of the model.
Each simulation generated a packet of 50 OFDM symbols sent across a simulated
wireless channel, capturing varying channel conditions. In this study, a ‘packet
sample’ represents one 50-OFDM symbol packet, serving as a single observation
for estimation.
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4.2 Data Preparation for LSTM

The dataset that was created according to the IEEE 802.11p standard (see Sec-
tion 2). We excluded the signal field from the dataset, assuming optimal receiver
synchronisation, for the sake of simplicity. As a result, the emphasis is on the
presence of two extended training symbols within each transmitted frame, fol-
lowed by a set of I Orthogonal Frequency Division Multiplexing (OFDM) data
symbols. The received OFDM symbol is represented by Equation 1.

We constructed Dataset_X and Dataset_Y matrices for the input and
target data, respectively. For training data, we obtained a real-valued train-
ing dataset Dataset_X by concatenating the real and imaginary parts of the
propagating channel (HLS_Structure) into one vector. Dataset_Y is the tar-
get output matrix created similarly to Dataset_X by concatenating the real
and imaginary parts of the actual or ground truth channel for specific positions,
1 to 48 for real and 49 to 96 for imaginary.

Dataset_X has dimensions 12, 000 × 50 × 104. Similarly, Dataset_Y has
dimensions 12, 000× 50× 96. The first dimension is the size of the dataset. The
second dimension denotes the number of OFDM symbols per frame, while the
third is the sequence length, which is the size of the input data positions if it is
Dataset_X or output if its Dataset_Y . Our input size is 104 and our output
size is 96 (as above).

4.3 Hyperparameter Optimisation

The hyperparameters of the dual-cell LSTM model were optimised using Op-
tuna to find the values that minimise loss of validation during training. Optuna
is a Bayesian optimisation framework that generates hyperparameter configura-
tions using a tree-structured parzen estimator (TPE) to maintain a probabilistic
model that links hyperparameters to measurable outcomes [2]. It terminates
underperforming tests early to maximise search efficiency. The procedure is re-
peated until either the desired convergence is achieved or the maximum number
of trials is reached.

We optimised a set of hyperparameters, namely the learning rate, the step size
of the optimiser, the gamma of the StepLR scheduler, the batch size, the weight
decay and the dropout probability. The optimisation procedure was carried out
as follows:

1. A dual LSTM model with fixed input size (104) was defined. This is the
total number of input subcarriers used in this work (Kon ∗2 where Kon = 52
active subcarriers). The LSTM size was 128.

2. The non-dominated Sorting Genetic Algorithm II (NSGA-II) sampler cre-
ated an Optuna study for multi-objective optimisation.

3. An objective function trained the dual-cell LSTM for 100 epochs with spec-
ified hyperparameters (Table 1).

4. Optuna recommended hyperparameters within defined limits, and Adam op-
timiser initialised and trained the dual-cell LSTM.
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5. Training and validation losses were tracked for each epoch, with the average
validation loss used.

6. The study ran 150 optimisation trials to identify optimal hyperparameters
based on the lowest validation loss.

7. The loss curve, weight, and bias plots were logged to the weights and bias4
for visualisation.

8. Optimal trial hyperparameters (learning rate, step size, gamma, dropout,
weight decay) were determined on the basis of the lowest validation loss.

The final model is trained for 250 epochs using a batch of 128. A summary of the
parameters of the dual cell LSTM model used in this work is given in Table 1.

Table 1: Optuna Hyperparameter optimisation: 150 trials and 100 epochs
Hyperparameters Search space Final value
Learning rate [1e-5, 1e-1] 0.01
Step size [1, 10] 9
gamma [0.1, 1] 0.6
Dropout probability [ 0.0, 0.8] 0.002
Weight decay [1e-6, 1e-2] 0.008
Batch size [16, 32, 48, . . . ,128] 128

5 Analysis and Simulation Results

We evaluate the following channel estimation methods, STA-DNN [5], LSTM-
DNN-DPA [13], LSTM-DPA-TA [4], DPA-TA and the proposed dual-cell LSTM
estimator against a perfect channel by calculating BER and NMSE in MATLAB.
The hidden layer dimensions of the STA-DNN were 15-15-15 and 128-40 for the
LSTM-DNN.

1. LSTM-DNN-DPA: This method involves cascading an LSTM and a mul-
tilayer perceptron network (MLP) to estimate the channel and DPA as a
post processor [13]. However, overfitting was not evaluated in this work, as
cascaded models possess a high risk of overfitting due to an increased number
of parameters.

2. LSTM-DPA-TA (128): This approach uses an LSTM model for channel
tracking followed by DPA and TA for noise reduction. Overall performance
is based on the precision of the initial LSTM estimate. The noise mitigation
ratio of TA processing has been analytically derived in [4]. This method was
not evaluated against other LSTM architectures.

4 https://wandb.ai/
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3. LSTM-DPA-TA (64): This is the same LSTM-based method as above but
using a smaller LSTM: size 64 instead of 128 [4]. A smaller LSTM size strug-
gles to learn long-term dependencies in dynamic environments compared to
a larger LSTM.

4. STA-DNN: This technique utilises DNNs to capture additional temporal
and frequency correlations [5]. However, this method does not consider se-
quential data, thus limiting its capability.

5. DPA-TA: We established our lower bound by using only the DPA and TA
techniques. The shortcoming of this approach is that it only uses conventional
techniques which are limited to learning patterns in data, especially dynamic
channels.

6. Dual-cell LSTM: We evaluate the performance of our dual-cell LSTM
network approach against the other methods in the same scenarios discussed
below.

5.1 High Mobility Scenario

In this section, we evaluate the performance of existing approaches and our
proposed dual-cell LSTM method under high mobility conditions, characterised
by a velocity (v) of 100 km/h and a Doppler frequency (fd) of 550Hz using two
key metrics; BER and NMSE.

Clarification on Data Comparison: The results of existing methods have
been extracted directly from Gizzen et al. [4], while the dataset used to develop
the dual-cell LSTM method was generated in-house following the experimental
setup detailed in that respective paper. The performance of the proposed method
is compared against the stated published performance of the methods presented
in [4]. We caution that in this comparison, the datasets generated according to
Section 4.2 and the unpublished dataset in [4] may differ, although the described
vehicular scenarios were precisely duplicated. To reflect this caution, we present
the comparison in separate graphs in Figures 3 and 4.

Figures 3a and 3b show the BER performance results of the DNN-based
estimators and the classical DPA-TA estimator. Our experiments showed that
the dual-cell LSTM was capable of dealing with a variety of SNR levels. At SNR
levels between 0 and 12 dB, it performed similarly to LSTM-DPA-TA (128).
When the SNR was between 27 and 40 dB, it outperformed all the models tested.
Figures 3c and 3d compare the dual-cell LSTM NMSE performance with that
of existing techniques. Lower NMSE values indicate a better estimate of the
true channel response. At an NMSE of 10−2, the dual-cell LSTM method shows
better performance than LSTM-DA-TA (128), LSTM-DA-TA (64) and LSTM-
DNN by approximately 7 dB, 8 dB, and 12 dB improvements, respectively. At
35 dB SNR, it reaches an NMSE of 10−3.

5.2 Very High Mobility Scenario

This section evaluates channel estimation methods under very high mobility
conditions of 200km/h and a frequency Doppler of 1,100Hz. BER and NMSE
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(a) BER performance of the proposed dual-
cell LSTM method.

(b) BER performance results of existing
methods.

(c) NMSE performance of the proposed
dual-cell LSTM method.

(d) NMSE performance of existing meth-
ods.

Fig. 3: BER and NMSE results under High Mobility conditions using the VTV-
SDWW channel model at v = 100 km/h, fd = 550 Hz.

metrics are used to evaluate performance. We again follow the experimental
setup of Grizzini et al. [4] to simulate the very high mobility environment, and
present results separately. Figures 4a and 4b plot the BER against SNR, where
all estimators showed reduced performance due to fast fading that causes a
decrease in the temporal correlations of the channel.

At SNR levels ranging from 0 to 15 dB, the LSTM-DPA-TA (128) approach
surpasses the dual-cell LSTM technique by up to 0.5 dB. On the other hand, the
BER of feedforward models such as STA-DNN deteriorates significantly more
rapidly even at high SNR due to its inability to exploit temporal dependencies
in highly dynamic channels. The corresponding NMSE vs SNR graphs are shown
in Figures 4c and 4d. Similarly, despite the challenges of extremely high mobility,
dual-cell LSTM showed a capability to achieve a very low NMSE by a significant
margin compared to the other existing DNN methods.
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(a) BER performance of the proposed dual-
cell LSTM method.

(b) BER performance results of existing
methods.

(c) NMSE performance of the proposed
dual-cell LSTM method.

(d) NMSE performance of existing meth-
ods.

Fig. 4: BER and NMSE performance at Very High Mobility: VTV-SDWW chan-
nel model at V = 200km/h, fd = 1,100Hz.

6 Conclusion

This paper introduced a dual-cell LSTM network model for dynamic channel
estimation in vehicular communication systems. A comparison was conducted
with results available from the literature, with experimental setups duplicated.
Our dual-cell LSTM model showed the potential to achieve very low NMSE
between estimated and true channel responses across all tested SNR levels of
magnitude close to 1 compared to other sequence models. In terms of BER,
the dual LSTM method showed improved performance in high SNRs, starting
at 30 dB, performing better than the other methods. This result supports our
hypothesis that the combination of two LSTM methods in a parallel ensemble
can outperform the existing single LSTM method and the feedforward methods.
Future work will include evaluating the complexity and learning capacity of
ensemble sequential learning methods.
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